On the extension of a partial metric to a tree metric

نویسندگان

  • Alain Guénoche
  • Bruno Leclerc
  • Vladimir Makarenkov
چکیده

Farach, Kannan and Warnow (1995) have defined Problem MCA (matrix completion to additive) and proved it to be NP-complete: given a partial dissimilarity d on a finite set X , does there exist a tree metric extending d to all pairs of elements of X . We use a previously described simple method of phylogenetic reconstruction, and its extension to partial dissimilarities, to characterize some classes of polynomial instances of MCA and of a related problem. We point out that these problems admit many other polynomial instances. Our main tool consists of two classes of generalized cycles, together with the corresponding maximal acyclic graphs (2-trees and 2d-trees). Résumé. Farach, Kannan et Warnow (1995) ont posé le problème MCA (matrix completion to additive) suivant et ont démontré sa NP-complétude : étant donné une dissimilarité d partielle sur un ensemble fini X, est-il possible de l'étendre en une distance d'arbre définie sur toutes les paires d'éléments de X. Nous utilisons une méthode simple de reconstruction phylogénétique, précédemment décrite, et son extension aux dissimilarités partielles pour caractériser des classes d'instances polynomiales de MCA et d'un problème voisin. Nous montrons qu'en fait beaucoup d'autres instances sont aussi polynomiales. L'outil principal est constitué par deux classes de cycles généralisés, avec les graphes acycliques maximaux (2-arbres et 2d-arbres) correspondants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$C$-class and $F(psi,varphi)$-contractions on $M$-metric spaces

Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In 2014 Asadi and {it et al.} [New Extension of $p$-Metric Spaces with Some fixed point Results on $M$-metric paces, J. Ineq. Appl. 2014 (2014): 18] extend the Partial metric spaces to $M$-metric spaces. In this work, we introduce the class of $F(psi,varphi)$-contrac...

متن کامل

On the fixed point theorems in generalized weakly contractive mappings on partial metric spaces

In this paper, we prove a fixed point theorem for a pair of generalized weakly contractive mappings in complete partial metric spaces. The theorems presented are generalizations of very recent fixed point theorems due to Abdeljawad, Karapinar and Tas. To emphasize the very general nature of these results, we illustrate an example.

متن کامل

Common Fixed Point Theorems for Weakly Compatible Mappings by (CLR) Property on Partial Metric Space

The purpose of this paper is to obtain the common fixed point results for two pair of weakly compatible mapping by using common (CLR) property in partial metric space. Also we extend the very recent results which are presented in [17,  Muhammad Sarwar, Mian Bahadur Zada and Inci M. Erhan, Common Fixed Point Theorems of Integral type on Metric Spaces and application to system of functional equat...

متن کامل

On the Structure of Metric-like Spaces

The main purpose of this paper is to introduce several concepts of the metric-like spaces. For instance, we define concepts such as equal-like points, cluster points and completely separate points. Furthermore, this paper is an attempt to present compatibility definitions for the distance between a point and a subset of a metric-like space and also for the distance between two subsets of a metr...

متن کامل

Fixed Point Theorems For Weak Contractions in Dualistic Partial Metric Spaces

In this paper, we describe some topological properties of dualistic partial metric spaces and establish some fixed point theorems for weak contraction mappings of rational type defined on dual partial metric spaces. These results are generalizations of some existing results in the literature. Moreover, we present examples to illustrate our result.

متن کامل

FORMAL BALLS IN FUZZY PARTIAL METRIC SPACES

In this paper, the poset $BX$ of formal balls is studied in fuzzy partial metric space $(X,p,*)$. We introduce the notion of layered complete fuzzy partial metric space and get that the poset $BX$ of formal balls is a dcpo if and only if $(X,p,*)$ is layered complete fuzzy partial metric space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 276  شماره 

صفحات  -

تاریخ انتشار 2004